Abstract

A GaN epilayer was grown on Al/sub 2/O/sub 3/ substrate by metal-organic chemical vapor deposition, and Co/sup -/ ions with a dose of 3/spl times/10/sup 16/ cm/sup -2/ were implanted into GaN at 350/spl deg/C. The implanted samples were postannealed at 700/spl deg/C-900/spl deg/C to recrystallize the samples and to remove implantation damage. We have investigated the magnetic and structural properties of Co ion-implanted GaN by using X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometer, and X-ray photoelectron spectroscopy (XPS). XRD results did not show any peaks associated with the second phase formation, and only the diffraction from the GaN layer and substrate structure were observed. The temperature dependence of magnetization taken in zero-field-cooling and field-cooling conditions showed the features of superparamagnetic system in films annealed at 700/spl deg/C-900/spl deg/C. The magnetization curves at 5 K for samples annealed at 700/spl deg/C-900/spl deg/C exhibits ferromagnetic hysteresis loops, and the highest residual magnetization (M/sub R/) and coercivity (H/sub c/) of M/sub R/=1.5/spl times/10/sup -4/ emu/g and H/sub c/=107 Oe were found in the 800/spl deg/C annealed sample. XPS measurement showed the metallic Co 2p core levels and the metallic valence band spectra for as-implanted and 700/spl deg/C-900/spl deg/C annealed samples. From these, it could be explained that the magnetic property of our films originated from Co and CoGa magnetic clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.