Abstract

Biocompatible magnetic semiconductor Zn1−xMgxFe2O4 (x=0, 0.1, 0.3, 0.5 & 0.7) nanoparticles of around 10nm diameter were synthesized by solvothermal reflux method. The method produces well separated and narrow size distributed nanoparticles. Crystal structure, morphology, particles surface properties, surfactant quantity, colloidal stability, magnetic properties and photocatalytic properties of the synthesized nanoparticles were studied. Different characterizations confirmed that all compounds were single crystals and superparamagnetic at room temperature. Saturation mass magnetization (Ms=57.5emu/g) enhances with substituent Mg2+ concentration due to promotion of mixed spinel (normal and inverse) structure. Photocatalytic activity of all synthesized magnetic semiconductor nanoparticles were studied through methylene blue degradation. The degradation of 98% methylene blue was observed on 60 min irradiation of light. It is observed that photocatalytic activity slightly enhances with substituent Mg2+ concentration. The synthesized biocompatible magnetic semiconductor nanoparticles can be utilized as photocatalysts and could also be recycled and separated by applying an external magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call