Abstract

Glass coated microwires with two metallic nucleus compositions Co57Fe 6.1Ni10B15.9Si11 and Fe36,4Co41,7B11,8Si10,1 with 3 different glass coating compositions (Pyrex – 74.5% SiO2, 15% - B2O3, 3%- Na2O, 2%- Al2O3 1.5% -K2O; Nonex – 73% SiO2, 16.5% - B2O3, 6% - PbO 3 %-Na2O, 1.5% -K2O; and F1 – 70.2% SiO2, 27% - B2O3, 0.8 %-Na2O, 2%- LiO2 1% -K2O;) with very similar geometry (metallic nucleus diameter 7 µm, total diameter 19 µm) have been successfully fabricated and studied. Ferich microwires in as-prepared state show rectangular hysteresis loops, which is connected with the strong internal stresses induced by the fabrication process. Co-rich compositions show inclined hysteresis loop with smaller value of coercive field. The coercivity, Hc, of Co-rich microwires is the highest and of Ferich samples is the lowest in the case of Pyrex coated microwires. The Nonex coated microwires are in the intermediate position while the F1 coated Co-rich microwires have the lowest Hc while the Fe-rich samples have the highest Hc. The mechanical tests show that the best tensile strain yield is observed in samples coated by Nonex glass followed by Pyrex and F1. In this way the variation of the glass coating material allows to tailor both magnetic and mechanical properties of glass coated tiny microwires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.