Abstract

The emergent magnetic and ferroelectric orders in A-site ordered Gd1/2Na1/2TiO3 under lattice strain are investigated using the first-principles calculations. It is revealed that the lattice prefers the perovskite structure with alternatively stacked Ga-O and Na-O layers along the b-axis and the ground spin state favors the G-type antiferromagnetic (G-AFM) order. The ac-plane biaxial strain can remarkably tune the amplitude of ferroelectric polarization, while the G-AFM spin structure is robustly unaffected. The ±4% strains can trigger the change of polarization up to ±50% relative to the polarization value of unstrained structure. The present work suggests a possible scenario to control emergent multiferroic behaviors in Gd1/2Na1/2TiO3 via lattice strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.