Abstract

Using a double glow-discharge-cluster-source-system, in which one glow discharge is a dc mode and the other an rf discharge mode, Fe and Si clusters have been produced independently and deposited simultaneously on a substrate. When a separation plate is not inserted between two glow-discharge chambers, core-shell clusters are obtained: An Fe core is surrounded by small Si crystallites. The magnetization measurement indicates that the magnetic coercive force of the Fe∕Si core-shell cluster assembly is much smaller than those of Fe cluster assemblies at low temperature and no shift of the field-cooled hysteresis loop related to the zero-field-cooled loop is detected, probably because Si shells prevent Fe cluster surfaces from their oxidation. The temperature dependence of electrical resistance is attributed to electron conduction via Si shell networks above 180K, while it is attributed to variable range electron conduction between Fe clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call