Abstract

Ni0.5Zn0.5Fe1.95R0.05O4 nanoparticles (R = Pr, Sm and La) have been synthesized by citrate precursor method and annealed at 450 °C. All the samples were found to be in single phase. The lattice constants and crystallite size decreases with rare earth substitution (25 nm, 23 nm, 11 nm and 9 nm) due to strain produced in spinel lattice. Saturation magnetization and coercivity of ferrite significantly decreases (50.69 emu/g, 32.17 emu/g. 30.21 emu/g and 34.65 emu/g respectively) with rare earth substitution. The substitution of large ionic radius rare earth ions in Ni0.5Zn0.5Fe2O4 results in distortion and induces a softening of magnetic exchange interaction. The dielectric measurements at higher frequency range (100 Hz–1 MHz) shows that these substituted ferrites exhibits low dielectric loss, which is suitable for high frequency applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call