Abstract

Copper ferrite nanopowders were successfully synthesized by a microwave-induced combustion process using copper nitrate, iron nitrate, and urea. The process only took a few minutes to obtain CuFe 2O 4 nanopowders. The resultant powders were investigated by XRD, SEM, VSM, and surface area measurement. The results revealed that the CuFe 2O 4 powders showed that the average particle size ranged from 300 to 600 nm. Also, it possessed a saturation magnetization of 21.16 emu/g, and an intrinsic coercive force of 600.84 Oe, whereas, upon annealing at 800 °C for 1 h. The CuFe 2O 4 powders specific surface area was 5.60 m 2/g. Moreover, these copper ferrite magnetic nanopowders also acted as a catalyst for the oxidation of 2,3,6-trimethylphenol to synthesize 2,3,5-trimethylhydrogenquinone and 2,3,5-trimethyl-1,4-benzoquinone for the first time. On the basis of experimental evidence, a rational reaction mechanism is proposed to explain the results satisfactorily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.