Abstract

In order to constrain the rate of magnetic enhancement in soils, we investigated modern soils from five fluvial terraces in the eastern Wind River Range, Wyoming. Profiles up to 1.2 m deep were sampled in 5-cm intervals from hand-dug pits or natural riverbank exposures. Soils formed in fluvial terraces correlated to the Sacajawea Ridge (730–610 ka BP), Bull Lake (130–100 ka BP) and Pinedale-age (∼20 ka BP) glacial advances. One soil profile formed in Holocene-age sediment. Abundance, mineralogy, and grain size of magnetic minerals were estimated through magnetic measurements. Magnetic enhancement of the A-horizon as well as an increase in fine-grained magnetic minerals occurred mostly in Bull Lake profiles but was absent from the older profile. Such low rates of magnetic enhancement may limit the temporal resolution of paleosol-based paleoclimate reconstructions in semiarid regions even where high sedimentation rates result in multiple paleosols. A loss of ferrimagnetic and an increase in antiferromagnetic minerals occurred with age. Our findings suggest either the conversion of ferrimagnetic minerals to weakly magnetic hematite with progressing soil age, or the presence of ferrimagnetic minerals as an intermediate product of pedogenesis. Absolute and relative hematite abundance increase with age, making both useful proxies for soil age and the dating of regional glacial deposits. All coercivity proxies are consistent with each other, which suggests that observed changes in HIRM and S-ratio are representative of real changes in hematite abundance rather than shifts in coercivity distributions, even though the modified L-ratio varies widely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.