Abstract

PurposeWafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.Design/methodology/approachThe current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.FindingsThe simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.Originality/valueMagnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.