Abstract

Implantable microelectrodes that can be remotely actuated via external fields are promising tools to interface with biological systems at a high degree of precision. Here, we report the development of flexible magnetic microelectrodes (FMμEs) that can be remotely actuated by magnetic fields. The FMμEs consist of flexible microelectrodes integrated with dielectrically encapsulated FeNi (iron-nickel) alloy microactuators. Both magnetic torque- and force-driven actuation of the FMμEs have been demonstrated. Nanoplatinum-coated FMμEs have been applied for in vivo recordings of neural activities from peripheral nerves and cerebral cortex of mice. Moreover, owing to their ultrasmall sizes and mechanical compliance with neural tissues, chronically implanted FMμEs elicited greatly reduced neuronal cell loss in mouse brain compared to conventional stiff probes. The FMμEs open up a variety of new opportunities for electrically interfacing with biological systems in a controlled and minimally invasive manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call