Abstract

Novel magnetic-activated carbon composites (MACs) were synthesized via coupling of a glucose-assisted hydrothermal pretreatment and subsequent thermal treatment using iron sludge and biological sludge. The adsorption properties of MACs for sulfonamide antibiotic removal from aqueous solution were investigated. Results revealed that the MACs had a high specific surface area with well-distributed magnetic nano-sized Fe3O4/Fe0 particles with a graphitic shell. This finding indicates that the ferric compounds in the iron sludge were not only converted into magnetic ferrite but also worked as activators for graphitization of the surrounding amorphous carbon. The pseudo-second-order kinetics and Langmuir models were shown to well fit sulfonamide antibiotic adsorption on the MACs. There was a high correlation between the kl·qm and physicochemical parameters of the sulfonamides. The three parameters are molecular polarizability, octanol-water partition coefficient, and solubility, respectively. The sulfonamide adsorption by the MACs was highly pH dependent. Hydrophobic interaction, π-π interaction, as well as electrostatic interaction, played dominant roles in the sulfonamide adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.