Abstract

Abstract Nascent neutron stars (NSs) with millisecond periods and magnetic fields in excess of 1016 Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL, which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the NS and release it as a disk wind or a jet with energies greater than 1052 erg over ∼20 s. What fraction of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 of and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium, these events are not very luminous, with peak bolometric magnitudes of due to low production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call