Abstract
Time-resolved studies uncovered kinetics and mechanism of Mg–hydrogen interactions during High energy reactive ball milling in hydrogen (HRBM) in presence of various types of carbon, including graphite (G), activated carbon (AC), multi-wall carbon nanotubes (MWCNT), expandable (EG) and thermally-expanded (TEG) graphite. Introduction of carbon significantly changes the hydrogenation behaviour, which becomes strongly dependent on the nature and amount of carbon additive. For the materials containing 1wt.% AC or TEG, and 5wt.% MWCNT, the hydrogenation becomes superior to that for the individual magnesium and finishes within 1h. Analysis of the data indicates that carbon acts as a carrier of the “activated” hydrogen by a mechanism of spill-over. For Mg–G the hydrogenation starts from an incubation period and proceeds slower. An increase in the content of EG and TEG above 1wt.% results in the deterioration of the hydrogenation kinetics. The effect of carbon additives has roots in their destruction during the HRBM to form graphene layers encapsulating the MgH2 nanoparticles and preventing the grain growth. This results in an increase of absorption–desorption cycle stability and a decrease of the MgH2 crystallite size in the re-hydrogenated Mg–C hybrid materials (40–125nm) as compared to Mg alone (180nm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.