Abstract
Performing an ab initio analysis, we inspect the effect of magnesium vacancies and hydrogen doping on the magnesium hydride (MgH2). The Korringa – Kohn – Rostoker method integrated with the coherent potential approximation is used to perform our calculations. In particular, we find that the gravimetric capacity of MgH2 increases from 7.658 to 9.816 wt% when the concentrations of magnesium vacancies and hydrogen dopant atoms increase from 0 to 10%. Concretely, the results reveal that the magnesium vacancies and the hydrogen doping have a beneficial effect on the hydrogen storage properties of the hydride by decreasing its desorption temperature and stability. This decrease can be explained on the one hand by the diminution of the number of Mg atoms that establish strong bonds with H atoms, and on the other hand by using the density of states, which indicates that when the concentrations increase, the Mg and H states shift to the conduction band. We also obtain that the value of the desorption temperature can be controlled by varying the concentrations of magnesium vacancies and hydrogen dopant atoms from 4.2 to 5.8% in order to reach the optimum range 289–393 K for the practical use of fuel cell vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.