Abstract

BackgroundRemifentanil induced hyperalgesia (RIH) is characterized by stimulation evoked pain including allodynia and thermal hyperalgesia after remifentanil infusion. N-methyl-D-aspartate (NMDA) receptor was reported to be involved in the progress of RIH. We hypothesized that intrathecal MgSO4 could relieve hyperalgesia after remifentanil infusion via regulating phosphorylation of NMDA receptor NR2B subunit activity in this study.MethodsThirty two rats were randomly allocated into control group, model of RIH group, RIH plus 100ug MgSO4 group, RIH plus 300ug MgSO4 group. Mechanical and thermal hyperalgesia were tested at -24th h, 2nd h, 6th h, 24th h, 48th h after remifentanil infusion. Following sacrifice of rats after the last behavioral test, we performed the western blot to detect the expression of spinal phosphorylated NMDA receptor NR2B subunit (pNR2B) in the L4-L5 segments.ResultsIntrathecal MgSO4 (100, 300 μg) dose-dependently reduced thermal and mechanical hyperalgesia from 2 h to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of pNR2B. Nevertheless, the increased amount of pNR2B by RIH was dose-dependently suppressed by intrathecal infusion of MgSO4 in rats.ConclusionsRemifentanil induced hyperalgesia/allodynia could be ameliorated by Mg-mediated blockade targeting the NR2B subunit in NMDA receptors.

Highlights

  • Remifentanil induced hyperalgesia (RIH) is characterized by stimulation evoked pain including allodynia and thermal hyperalgesia after remifentanil infusion

  • Remifentanil was reported to be associated with the development of hyperalgesia. it was noted that general anesthesia based on remifentanil infusion resulted in severe postoperative pain after surgery [1]

  • Remifentanil could enhance the activation of spinal NMDA receptor, which was attributed to the progress of remifentanil induced hyperalgesia (RIH) [3]

Read more

Summary

Introduction

Remifentanil induced hyperalgesia (RIH) is characterized by stimulation evoked pain including allodynia and thermal hyperalgesia after remifentanil infusion. N-methyl-D-aspartate (NMDA) receptor was reported to be involved in the progress of RIH. We hypothesized that intrathecal MgSO4 could relieve hyperalgesia after remifentanil infusion via regulating phosphorylation of NMDA receptor NR2B subunit activity in this study. Remifentanil was reported to be associated with the development of hyperalgesia. N-methyl-D aspartate (NMDA) receptors was known to play a critical role in excitatory synaptic transmission. Remifentanil could enhance the activation of spinal NMDA receptor, which was attributed to the progress of remifentanil induced hyperalgesia (RIH) [3]. Tyrosine-1472 phosphorylation in NR2B is known to be associated with neuropathological conditions [4]. Phosphorylation of Tyr-1472 in NR2B (pNR2B) has previously been demonstrated in the progress of RIH [5]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call