Abstract

Sintering has major effect on the final properties of materials such as density, porosity and microstructure. Sintering of Mg-Si CHA in particular is a complex process since changes could occur during sintering, which include phase formation, grain size, pore size and carbonate content, and this in turn affects the mechanical properties. Improved mechanical properties of Mg-Si CHA is critical in load bearing implant applications. Poor control of thermal treatment of Mg-Si CHA during sintering would cause carbonate loss, leading to partial or total decomposition of Mg-Si CHA, subsequently would affect the physical and mechanical properties. The influence of powder properties (particle size, porosity, morphology) and sintering parameters (heating rate, firing atmosphere) on the sintered Mg-Si CHA microstructure was studied using scanning electron microscopy (SEM) characterization technique. The SEM results showed that we are able to produce sintered Mg-Si CHA without cracking of the compacted pellets, while keeping the carbonate level in the amount required (2 – 8%). X-Ray diffraction (XRD) was also performed on the sintered samples and the results indicated that a single phase Mg-Si-CHA was obtained, while Fourier transform infra-red (FTIR) spectroscopy result confirmed that as-synthesized Mg-Si CHA powder was a B-type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.