Abstract
Mosquito-borne flaviviruses including dengue, Zika, yellow fever, and regional encephalitis produce a large amount of short subgenomic flaviviral RNAs during infection. A segment of these RNAs named as xrRNA1 features a multi-pseudoknot (PK)-associated structure, which resists the host cell enzyme (XRN1) from degrading the viral RNA. We investigate how this long-range RNA PK folds in the presence of counterions, specifically in a mix of monovalent (K+) and divalent (Mg2+) salts at physiological concentrations. In this study, we use extensive explicit solvent molecular dynamics (MD) simulations to characterize the RNA ion environment of the folded RNA conformation, as determined by the crystal structure. This allowed us to identify the precise locations of various coordinated RNA-Mg2+ interactions, including inner-sphere/chelated and outer-sphere coordinated Mg2+. Given that RNA folding involves large-scale conformational changes, making it challenging to explore through classical MD simulations, we investigate the folding mechanism of xrRNA1 using an all-atom structure-based RNA model with a hybrid implicit-explicit treatment of the ion environment via the dynamic counterion condensation model, both with and without physiological Mg2+ concentration. The study reveals potential folding pathways for this xrRNA1, which is consistent with the results obtained from optical tweezer experiments. The equilibrium and free energy simulations both capture a dynamic equilibrium between the ring-open and ring-close states of the RNA, driven by a long-range PK interaction. Free energy calculations reveal that with the addition of Mg2+ ions, the equilibrium shifts more toward the ring-close state. A detailed analysis of the free energy pathways and ion-mediated contact probability map highlights the critical role of Mg2+ in bridging G50 and A33. This Mg2+-mediated connection helps form the long-range PK which in turn controls the transition between the ring-open and ring-close states. The study underscores the critical role of Mg2+ in the RNA folding transition, highlighting specific locations of Mg2+ contributing to the stabilization of long-range PK connections likely to enhance the robustness of Xrn1 resistance of flaviviral xrRNAs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.