Abstract
Abstract— According to a currently popular model for petrogenesis on the howardite, eucrite, and diogenite (HED) parent asteroid, the diogenites are not comagmatic with most eucrites but instead formed in separate orthopyroxenite‐dominated plutons. This model can be tested for consistency with mass balance for MgO and FeO, assuming the overall diogenite/(diogenite + eucrite) ratio, d, of the parent asteroid is at least comparable to the average d for the eucrite + diogenite dominated howardite regolith breccias. Average mg# (=MgO/[MgO + FeO]) is much lower for eucrites, especially noncumulate eucrites, than for diogenites. Unless the diogenite parent magmas eventually produced a large proportion of low‐mg# residual basalt and gabbro (RBG), the implied initial magma's mg# is vastly higher than that of any noncumulate eucrite. Starting from a source previously depleted by putative primary eucrite genesis, melt mg# can be estimated as a function of the exchange reaction KD and degree of melting. Using several very conservative assumptions (e.g., assuming that the total [MgO + FeO] concentration is nearly the same in the nascent melt as in the residual solids), the degree of melting required to yield a melt with mg# high enough to satisfy mass balance, without implying an RBG component that accounts for >50% of all eucrites, is an implausibly high 60–80 wt%.The separate orthopyroxenitic plutons (SOP) model also seems inconsistent with the uniform density of melts across the diogenite‐eucrite compositional spectrum (2.77–2.82 g/cm3), which implies that diogenitic magmas should have been as capable as eucrites of extruding to form lavas. This difficulty cannot be reduced by simply assuming that later‐formed magmas were systematically both more plutonic and more MgO‐rich than earlier ones, because the plutonic cumulate eucrites equilibrated with melts systematically lower in mg# than noncumulate eucrites. Conceivably, the bulk mg# of the asteroid's silicate system was increased between primary‐melt eucrite genesis and SOP diogenite genesis by graphite‐fueled reduction of FeO. However, the graphite oxidation process generates a huge proportion of gas, which would have enhanced the buoyancy of the nascent diogenite‐parent magmas, thus exacerbating the difficulty of achieving the implied high degrees of partial melting.To avoid these difficulties but still form most eucrites as rapidly cooled extrusives, I propose the NERD (noncumulate eucrites as extruded residua of diogenites) model. In this model, the diogenites form as early cumulates from a large magma system (probably a global “magma ocean”) that yields a large proportion of eucritic melt as residuum. This residual melt zone undergoes relatively little crystallization during a period when it is episodically tapped to produce extrusions, dikes and sills of rapidly cooled noncumulate eucrites. Slight (∼5–10%) porosity in the nascent eucritic crust keeps it marginally buoyant over the residual melt zone. The common thermal metamorphism of noncumulate eucrites results from baking by superjacent flows during the episodic venting of the melt zone. The NERD model's greatest advantage is that it does not require implausibly high degrees of localized melting in the mature stages of igneous evolution of the HED asteroid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.