Abstract
Magnesium (Mg) ions are the most abundant intracellular divalent cations and play a pivotal role in numerous cellular processes. Biodegradable Mg-containing materials, including scaffolds, are promising candidates for orthopedic applications. Here, we investigated the effect of Mg ions on the cellular properties of osteoblasts. Cytotoxicity tests on osteoblasts confirmed that no cytotoxic effects were found up to a supplementing Mg ion concentration of 10 mM. Mg ions at a concentration of 5 mM increased the migration and invasiveness of osteoblasts. To investigate the stimulatory effect of Mg ions on cell motility in scaffolds, we fabricated 10 wt% Mg ion-containing polycaprolactone (PCL) scaffolds, using the wire-network molding (WNM) technique. Mg ion-containing scaffolds persistently released Mg ions at a concentration of 5 mM in the media after pre-incubation. Furthermore, increased cell motility was confirmed in Mg ion-containing scaffolds by quantification of genomic DNA and protein content. Our results provide an important basis for the function of Mg ions and their effect on cell motility, and propose a novel role for Mg ions in scaffold applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.