Abstract
Optimal conditions for RecA protein-mediated DNA strand exchange include 6-8 mm Mg(2+) in excess of that required to form complexes with ATP. We provide evidence that the free magnesium ion is required to mediate a conformational change in the RecA protein C terminus that activates RecA-mediated DNA strand exchange. In particular, a "closed" (low Mg(2+)) conformation of a RecA nucleoprotein filament restricts DNA pairing by incoming duplex DNA, although single-stranded overhangs at the ends of a duplex allow limited DNA pairing to occur. The addition of excess Mg(2+) results in an "open" conformation, which can promote efficient DNA pairing and strand exchange regardless of DNA end structure. The removal of 17 amino acid residues at the Escherichia coli RecA C terminus eliminates a measurable requirement for excess Mg(2+) and permits efficient DNA pairing and exchange similar to that seen with the wild-type protein at high Mg(2+) levels. Thus, the RecA C terminus imposes the need for the high magnesium ion concentrations requisite in RecA reactions in vitro. We propose that the C terminus acts as a regulatory switch, modulating the access of double-stranded DNA to the presynaptic filament and thereby inhibiting homologous DNA pairing and strand exchange at low magnesium ion concentrations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.