Abstract

Magnesium (Mg) electrolytes are presently under investigation for their promising performance capabilities in the next generation of batteries. The present work studies Mg-ion transport in polymers using different types of Mg salts. Polymer electrolytes comprising poly(ethylene carbonate) (PEC) with Mg salts (MgX2; X = TFSI, ClO4) were prepared by solution casting. The structural, thermal, and electrochemical properties of flexible self-standing membranes were studied as potential Mg electrolytes. The impedance results at 90 °C found the highest conductivities of 6.0 × 10−6 S cm−1 for PEC-Mg(TFSI)2, and 5.2 × 10−5 S cm−1 for PEC-Mg(ClO4)2, at 40 mol%. FT-IR measurements revealed changes in the peak fraction from the region of carbonyl group, which explain the interaction with Mg ions. The glass transition temperature of the TFSI system decreased with increasing salt concentration due to the plasticizing effect of TFSI anions. Thermal gravimetric analysis revealed that the highest values of the 5% weight-loss temperature at 40 mol% are 174 °C for PEC-Mg(TFSI)2 and 160 °C for PEC-Mg(ClO4)2. The electrochemical stability of PEC-Mg(TFSI)2 at 40 mol% was up to 2.2 V. To confirm the redox reaction of Mg ions in PEC, CV measurement was carried out using symmetrical cells with quasi Mg electrodes. Cathodic and anodic current peaks were clearly observed, and the presence of these peaks indicates Mg-ion conduction in PEC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.