Abstract

The interaction of ammonium stearate (AS) and γ-aminopropyltriethoxysilane (APS) treatments with a magnesium hydroxide flame retardant filler and their effects on its use in an ethylene vinyl acetate copolymer compound have been investigated. The work has shown clear evidence of changes in the structure of the surface layers formed on the filler as the amount of additive is increased and the levels at which these occur can be correlated with theoretical monolayer quantities. Infrared (IR) spectroscopy data suggest that the stearate coating changes from a half salt to a full salt as the coating level is increased and that the APS coating on the filler initially has a significant bicarbonate content, presumably due to reaction with atmospheric carbon dioxide. The effect of coating level on the melt flow rate, insoluble matrix content, crystallisation behaviour, tensile properties, limiting oxygen index, and ageing of the filled compound has been studied. Distinct trends have been observed, many of which can be correlated with the structure of the filler surface layers. Of particular importance is the observation that, unlike APS, excess stearate appears to promote detrimental ageing effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.