Abstract

Lamellar dehydroxylation mechanisms are important in understanding highly reactive nanocrystal oxide formation as well as a variety of applied lamellar hydroxide reaction processes. These mechanisms have been observed for the first time via in situ nanoscale imaging for the prototype lamellar hydroxide: Mg(OH)2. Environmental-cell, dynamic high-resolution transmission electron microscopy was combined with advanced computational modeling in discovering that lamellar nucleation and growth processes govern dehydroxylation. The host lamella can guide the formation of a solid solution series of lamellar oxyhydroxide intermediates en route to oxide formation. This investigation opens the door to a deeper, atomic-level understanding of lamellar dehydroxylation reaction processes, nanocrystal oxide formation, and the range of potential new intermediate materials and third component reaction pathways they can provide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call