Abstract

Hydrogen-rich water (HRW), normally produced by water electrolysis, is a major method for hydrogen gas (H2) delivery, and had beneficial outcomes in postharvest preservation of cut roses. Since the preparation of HRW is complicated and required a H2 generator, the development of a convenient hydrogen supply in horticulture is required. In this report, magnesium hydride (MgH2), a H2-releasing material used in hydrogen industry and medical research, was tested. Compared to HRW produced by electrolysis, release of H2 by MgH2 hydrolysis was more convenient and flexible. Similar to conventional HRW, MgH2 could contribute H2 and prolong the vase life of cut roses. This beneficial role of MgH2 was verified by the observed increase in water content, decreased lipid peroxidation, and increased antioxidant levels. Pharmacologic experiments showed that MgH2 mimicked the cut flower response of nitric oxide (NO)-releasing compound by triggering an increase in endogenous NO production. In contrast, the positive effects of MgH2 on cut flower vase life and lipid peroxidation were impaired by a NO scavenger and its synthetic inhibitor. This indicated a requirement for NO in the MgH2-mediated pathway for prolonged vase life of cut rose flowers. Therefore, this study identifies a new opportunity for the application of H2-releasing materials as an alternative approach for more convenient and flexible hydrogen supply in horticulture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call