Abstract

UiO-66, MOF-808 and NU-1000 metal-organic frameworks exhibit a differentiated reactivity toward [Mg(OMe)2(MeOH)2]4 related to their pore accessibility. Microporous UiO-66 remains unchanged while mesoporous MOF-808 and hierarchical micro/mesoporous NU-1000 materials yield doped systems containing exposed MgZr5O2(OH)6 clusters in the mesoporous cavities. This modification is responsible for a remarkable enhancement of the catalytic activity toward the hydrolytic degradation of P-F and P-S bonds of toxic nerve agents, at room temperature, in unbuffered aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.