Abstract

The effects of Mg2+ concentration (Mg2+o, 0, 1.2, 2.4, and 4.8 mM) on the incidence of reperfusion arrhythmias and on the cellular electrical activity were studied in spontaneously beating rat hearts. The surface electrogram and the membrane potential were recorded in control conditions, during 10 min of regional ischemia (ligature of the left anterior descending coronary artery), and on reflow. Changes in Mg2+o did not alter action potential morphology but the depolarization induced by ischemia decreased with increasing Mg2+o. In hearts perfused with Mg2+ free solution or 1.2 mM subthreshold delayed afterdepolarizations (DADs) were often detected during ischemia. Moreover, DADs could be identified as initial events in the production of extrabeats or tachycardia appearing on reperfusion under these conditions. Chaotic electrical activity during fibrillation precluded the observation of DADs. The overall incidence (100%) and severity of ventricular tachyarrhythmias (80% tachycardia and fibrillation) was similar in both groups. At high Mg2+o, subthreshold DADs were occasionally observed during ischemia and often on reperfusion where they did not lead to the development of overt arrhythmias. Consequently, the incidence, severity, and duration of arrhythmic episodes on reflow was markedly reduced. Raising Mg2+ only on reperfusion did not prevent the development of arrhythmias, whose morphology in the intracellular recordings was similar to that found in hearts perfused without Mg2+ or with 1.2 mM. The recovery of sinus rhythm after 10 min of reperfusion was linearly related to Mg2+o. Our data strengthen the view that reperfusion arrhythmias belong to the Ca2+ mediated non reentrant type and suggest that Mg2+ counteracts these arrhythmias by depressing cytosolic Ca2+ oscillations. Besides, it appears that raising Mg2+o reduces ischemic K+o accumulation. The resulting changes in resting potential could contribute to lower DADs amplitude and thus decrease the arrhythmogenic potential of the Ca2+i oscillations induced by reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.