Abstract

The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of approximately 5.5 kJ/mol and the closed state approximately 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.