Abstract

Aims/hypothesisHypomagnesaemia (blood Mg2+ <0.7 mmol/l) is a common phenomenon in individuals with type 2 diabetes. However, it remains unknown how a low blood Mg2+ concentration affects lipid and energy metabolism. Therefore, the importance of Mg2+ in obesity and type 2 diabetes has been largely neglected to date. This study aims to determine the effects of hypomagnesaemia on energy homeostasis and lipid metabolism.MethodsMice (n = 12/group) were fed either a low-fat diet (LFD) or a high-fat diet (HFD) (10% or 60% of total energy) in combination with a normal- or low-Mg2+ content (0.21% or 0.03% wt/wt) for 17 weeks. Metabolic cages were used to investigate food intake, energy expenditure and respiration. Blood and tissues were taken to study metabolic parameters and mRNA expression profiles, respectively.ResultsWe show that low dietary Mg2+ intake ameliorates HFD-induced obesity in mice (47.00 ± 1.53 g vs 38.62 ± 1.51 g in mice given a normal Mg2+-HFD and low Mg2+-HFD, respectively, p < 0.05). Consequently, fasting serum glucose levels decreased and insulin sensitivity improved in low Mg2+-HFD-fed mice. Moreover, HFD-induced liver steatosis was absent in the low Mg2+ group. In hypomagnesaemic HFD-fed mice, mRNA expression of key lipolysis genes was increased in epididymal white adipose tissue (eWAT), corresponding to reduced lipid storage and high blood lipid levels. Low Mg2+-HFD-fed mice had increased brown adipose tissue (BAT) Ucp1 mRNA expression and a higher body temperature. No difference was observed in energy expenditure between the two HFD groups.Conclusions/interpretationMg2+-deficiency abrogates HFD-induced obesity in mice through enhanced eWAT lipolysis and BAT activity.

Highlights

  • Hypomagnesaemia affects approximately 30% of individuals with type 2 diabetes [1, 2]

  • We explored the role of Mg2+ in energy homeostasis, insulin sensitivity and lipid metabolism, by feeding mice a low-fat diet (LFD) or a high-fat diet (HFD) combined with low or normal Mg2+ for 17 weeks

  • Reduced diet-induced obesity in Mg2+-deficient mice is accompanied by improved insulin sensitivity To explore glucose metabolism in more detail, beta cell function and insulin sensitivity were determined by IPGTT and IPITT

Read more

Summary

Introduction

Hypomagnesaemia is an important risk factor for the development and progression of type 2 diabetes [3,4,5]. Reduced blood Mg2+ levels have been correlated with elevated glucose and triacylglycerol concentrations in individuals with type 2 diabetes, suggesting that hypomagnesaemia is associated with insulin resistance and dyslipidaemia [1]. Mg2+ fulfils many roles including cell growth, membrane stability, enzyme activity and energy metabolism [9]. It is a cofactor for numerous enzymes, primarily because it stabilises ATP and facilitates phosphate transfer reactions [10, 11].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call