Abstract

Magnesium deficiency and oxidative stress have been identified as correlative factors in many diseases. The origin of free radicals correlated with oxidative damage resulting from Mg-deficiency is unclear at the cellular level. To investigate whether hydrogen peroxide (H2O2) is associated in the oxidative stress induced by Mg-deficiency, the effect of Mg2+ deficiency (0, 0.4, 0.7 mM) on the metabolism of H2O2 was investigated in cultured chick embryo hepatocytes. After being cultured in the media with various concentrations of Mg2+ for 1, 2, 4, 6 and 10 days, parameters of H2O2 production, catalase activity, lipid peroxidation, intracellular total Mg and cell viability were analyzed. Results demonstrated that long-term incubation of chick embryo hepatocyte in extracellular Mg2+-deprivative and Mg2+-deficient (0.4 mM) states significantly enhanced the production of H2O2 (approximately twofold, respectively) and lipid peroxidation in the cell cultures, while decreasing the cell viability. Additionally, the reversing action of Mg2+ re-added to 1.0 mM and the partial reversing action of dimethylthiourea suggested that (i) [Mg2+]e deficiency induced the increase of H2O2 production, (ii) [Mg2+]e deficiency decreased catalase activity in chick embryo hepatocyte in vitro, subsequently causing oxidative stress and cell peroxidative damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.