Abstract

A series of racemic 2-[(2'-(dimethylamino)biphenyl-2-ylimino)methyl]-4-R(2)-6-R(1)-phenols (L¹H-L⁴H) were reacted with {Mg[N(SiMe3)2]2}2 to provide four heteroleptic magnesium complexes (L¹⁻⁴)MgN(SiMe3)2·(THF)n (1, R(1) = (t)Bu, R(2) = Me, n = 1; 2, R(1) = R(2) = CMe2Ph, n = 0; 3, R(1) = CPh3, R(2) = (t)Bu, n = 1; 4, R(1) = Br, R(2) = (t)Bu, n = 0), which have been fully characterized. X-ray structural determination shows that complex 1 possesses a monomeric structure, but complex 4 is dimeric with C2-symmetry where the two metal centers are bridged by two phenolate oxygen atoms of the ligands. The coordination geometry around the magnesium center in these complexes can be best described as a distorted tetrahedral geometry. The heteroleptic complexes 1-4 efficiently initiate the ring-opening polymerization of rac-lactide and α-methyltrimethylene carbonate (α-MeTMC) and the polymerizations are better controlled in the presence of 2-propanol. In general, the introduction of a bulky ortho-substituent on the phenoxy unit results in increases of both the catalytic activity and the stereo- or regioselectivity of the corresponding magnesium complex. Microstructure analyses of the resulting PLAs revealed that P(r) values range from 0.46 to 0.81, depending on the catalyst and the polymerization conditions. For racemic α-MeTMC, detailed analyses using (1)H and (13)C NMR spectroscopy indicated the preferential ring-opening of α-MeTMC at the most hindered oxygen-acyl bond (X(reg) = 0.65-0.86).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.