Abstract

Accurate experimental structure factors for Mg have been measured and compared with density functional theory (DFT) to test some commonly used functionals and self-interaction correction (SIC) schemes. Low order structure factors, free of extinction and on absolute scale, were measured accurately by quantitative convergent beam electron diffraction. In addition, a complete set of structure factors up to sin θ/λ=1.6 Å−1 was measured by x-ray diffraction at 10 K. The DFT calculations were performed using the full potential linearized augmented plane wave method. It was found that the agreement with experiment increases when going from the local density approximation (LDA) to the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhofer and further to the GGA of Engel and Vosko. Applying the SIC of Perdew and Zunger to the core states for LDA does not improve the agreement with theory, while applying the SIC of Lundin and Eriksson results in a significantly improved agreement. This implies that the main source of error in the LDA functional comes from the description of the core densities. Using the functional which agrees best with experiment, a non-nuclear maximum is established in the calculated electron density of beryllium but not of magnesium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call