Abstract

Hypomagnesemia was identified as a strong risk factor for cardiovascular disease in patients with chronic renal failure (CRF). However, the effects of magnesium (Mg) on vascular calcification (VC) have not been fully elucidated. Thus, we aim to determine the effects of Mg citrate (MgCit) on VC in CRF rats. Rats were divided into 5 groups: group 1 (normal diet), group 2 (normal diet with MgCit), group 3 (the VC model of CRF induced by 0.75% adenine and 0.9% phosphorus diet from day 1 to day 28), group 4 (group 3 treated with low-dose MgCit from day 1 to day 42), and group 5 (same as group 3 except the high-dose MgCit). All rats were killed at day 43 with collection of blood and aortas. Then, serum biochemical parameters, VC-related staining, calcium and P contents, alkaline phosphatase contents and activity, expression of alpha smooth muscle actin, and runt-related transcription factor 2 (RUNX2) in aortas were assessed. Group 3 had extensive VC. The VC degree decreased in groups 4 and 5 in a dose-depended manner with reduced calcium content, P levels, alkaline phosphatase content and activity, and protein levels of RUNX2 and increased protein levels of alpha smooth muscle actin in aortas. MgCit exerted a protective role in VC in adenine-induced CRF rats; thus, it may be a potential drug for the prevention of VC in patients with CRF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call