Abstract

AbstractPolymerizations of decene‐1 were carried out from 0° to 70° at A/T = 167 and [M] = 0.75 M initiated by 0.17, 0.34, and 0.69 mM of Ti contained in the MgCl2/ethylbenzoate/p‐cresol/AlEt3/TiCl4‐AlEt3/methyl‐p‐toluate catalyst. The rate of polymerization is directly proportional to the catalyst concentration. About 12% of the Ti in the catalyst is initially active at 50°; they are 1.4%, 8.8%, and 9.4% at 0°, 25°, and 70°, respectively. The changes of Rp with temperature parallels the variations in the active site concentration. The decline of Rp with time has second‐order plots with slopes which are inversely proportional to the catalyst concentration, but the rate constants for these deactivations are nearly the same for decene and propylene polymerizations. These results strongly support a mechanism of deactivation involving two adjacent sites in the catalyst particle surfaces. The rate constants of propagation and of chain transfer to AlEt3, the energetics for these processes, and MW and MW distribution data have been obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call