Abstract

The first example of a catalytic hydroboration of amides for their deoxygenation to amines is reported. This transformation employs an earth-abundant magnesium-based catalyst. Tertiary and secondary amides are reduced to amines at room temperature in the presence of pinacolborane (HBpin) and catalytic amounts of ToMMgMe (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). Catalyst initiation and speciation is complex in this system, as revealed by the effects of concentration and order of addition of the substrate and HBpin in the catalytic experiments. ToMMgH2Bpin, formed from ToMMgMe and HBpin, is ruled out as a possible catalytically relevant species by its reaction with N,N-dimethylbenzamide, which gives Me2NBpin and PhBpin through C–N and C–C bond cleavage pathways, respectively. In that reaction, the catalytic product benzyldimethylamine is formed in only low yield. Alternatively, the reaction of ToMMgMe and N,N-dimethylbenzamide slowly gives decomposition of ToMMgMe over 24 h, and this interaction ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.