Abstract

Step velocities of monolayer-height steps on the (1014) magnesite surface have been measured as functions of the aqueous magnesium:carbonate ratio and saturation index (SI) using a hydrothermal atomic force microscope. At SI ≤ 1.9 and 80–90 °C, step velocities were found to be invariant with changes in the magnesium:carbonate ratio, an observation in contrast with standard models for growth and dissolution of ionically bonded, multicomponent crystals. However, at high saturation indices (SI = 2.15), step velocities displayed a ratio dependence, maximized at magnesium:carbonate ratios slightly greater than 1:1. Traditional affinity-based models could not describe growth rates at the higher saturation index. Step velocities also could not be modeled solely through nucleation of kink sites, in contrast to other minerals whose bonding between constituent ions is also dominantly ionic in nature, such as calcite and barite. Instead, they could be described only by a model that incorporates both kink nucleation...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.