Abstract

Fluid-phase stability relations combined with thermodynamic modeling using fluid-inclusion analyses and new gold-solubility experiments lead to an integrated geological interpretation linking epithermal gold mineralization and porphyry-style ore formation to the cooling of hydrous magma chambers. The essential chemical requirement for gold transport to low temperatures is an initial excess of sulfide over Fe in the magmatic fluid, which is best achieved by condensing out Fe-rich brine from a buoyant, low- to medium-salinity vapor enriched in volatile S. This vapor can contract directly to an aqueous liquid, by cooling at elevated pressure above the critical curve of the salt-water fluid system. Physical and chemical conditions are matched when magmatic fluid is released through a gradually downward-retracting interface of crystallizing magma beneath a porphyry stock, predicting the consistent zoning and overprinting relations of alteration and mineralization observed in magmatic hydrothermal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.