Abstract

One of the current goals of Martian exploration is to find evidence for extinct (or even extant) life. Carbon (an essential ingredient of life on Earth) is known to occur on Mars as CO2 in the atmosphere and frozen in the polar caps; it is inferred to be present as carbonates in the Martian crust and soils. We are attempting to define and quantify the different carbon reservoirs on Mars, so that we can follow Mars' carbon cycle. This paper discusses a primordial magmatic component that could be the starting point of such a cycle. The nature, distribution and isotopic composition of carbon was measured in a suite of Martian meteorites, comprising Chassigny and 11 shergottites. Other Martian meteorites were not included, as they sample rocks that have been altered by fluids at Mars' surface. Our results, obtained by high-resolution stepped combustion and mass spectrometry, show that the magmatic component has a very variable abundance of 1–100 ppm, with δ13C~−20±4‰. This value is close to magmatic carbon determined for Moon and for Vesta (the parent body of the HED basaltic meteorites), but very different from that of Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.