Abstract

Abstract The interaction of magma and wall-rocks is inevitable when magma is moving through Earth's crust. These interactions happen on different timescales and especially the short-term interactions (seconds to days) during the final ascent of the magma can induce changes in eruption dynamics. However, information on this matter is scarce and scattered in different scientific fields. We conducted this review in order to present a full picture of the state of the art for short-timescale magma–wall-rock interactions. According to the three existing studies on short-term magma–carbonate interactions, magma viscosity is the most important controlling factor for carbonate assimilation. Lower viscosity magmas enhance CO 2 -bubble migration away from the reaction site, resulting in a higher carbonate assimilation rate. The released CO 2 plays an important role regarding eruption dynamics since a higher CO 2 release rate would result in accelerated magma ascent and may increase eruption intensity. Despite the importance for hazard assessment, important factors (pressure, magma composition, vapour phase solubilities, carbonate clast properties) for carbonate assimilation in general and CO 2 release rate in particular are not or only poorly constrained. This review presents the present-day knowledge of short-term magma–carbonate interaction that is relevant to establish the basis for future work concerning magma–wall-rock interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.