Abstract
The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO < 3 wt.%) are characterised by low SiO 2 concentration (< 50 wt.%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H 2O and CaCO 3 in the starting material up to 2 and 7 wt.%, respectively. The experiments performed at 0.5 GPa are the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO 3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidence showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO 3-bearing experiments (i.e., simulating magma–carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma–carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.