Abstract

Theoretical consideration of the magma vesiculation process under observed and inferred venusian surface conditions suggests that vesicles should form in basaltic melts, especially if CO 2 is the primary magmatic volatile. However, the high surface atmospheric pressure ((∼90 bars) and density on Venus retard bubble coalescence and disruption sufficiently to make explosive volcanism unlikely. The products of explosive volcanism (fire fountains, convecting eruption clouds, pyroclastic flows, and topography-mantling deposits of ash, spatter, and scoria) should be rare on Venus, and effusive eruptions should dominate. The volume fraction of vesicles in basaltic rocks on Venus are predicted to be less than in chemically similar rocks on Earth. Detection of pyroclastic landforms or eruption products on Venus would indicate either abnormally high volatile contents of Venus magmas (2.5–4 wt%) or different environmental conditions (e.g., lower atmospheric pressure) in previous geologic history.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.