Abstract

The landslide and cataclysmic eruption of Mount St. Helens on May 18, 1980 triggered a sequence of explosive eruptions over the following five months. The volume of explosive products from each of these eruptions decreased uniformly over this period, and the character for each eruption progressed from a fairly continuous eruption lasting more than eight hours on May 18 to a series of short bursts, some of which were spaced 12 hours apart, on October 16–18. The transition in the character of these eruption sequences can be explained by a difference between the magma supply rate and the magma discharge rate from a shallow reservoir. The magma supply rate (MSR) is the rate with which magma is supplied to the level where disruption due to vesiculation occurs. It is determined by dividing the dense-rock-equivalent volume of eruptive products by the total duration of each eruption sequence. The magma discharge rate (MDR) is the rate with which the disrupted magma is discharged through the vent. It is determined by dividing the volume of erupted products by the duration of each explosive burst. The relative magnitude of these two quantities controls the temporal evolution of an explosive event. When MDR∼MSR the explosive phase of the eruption lasts for several hours as a single continuous event. When MDR>MSR, an eruption is characterized by a series of short explosive bursts at intervals of several minutes to several days. The MSR of the eruptions of 1980 decreased with time from 5500 m' s −1 on May 18 to 7 m 3 s −2 on October 16–18 and approximately fits an exponential decay. The MDR for the same events remained approximately constant at 2000 m 3 s −1. Each explosive event has been followed by an aftershock-like series of earthquakes located beneath the volcano at depth mostly between 7 and 14 km. The seismic energy released during each of these series is proportional to the corresponding volume of erupted magma. Deformation data between June and November, 1980 indicate a subsidence of the volcanic structure which can be modeled by a volume collapse of 0.25 km 3 located at 9 km depth. We propose a model in which magma is supplied from depths of 7–14 km through a narrow conduit during each eruption. It erupts to the surface at a uniform rate during each eruption. The deep seismic activity following each eruption is related to a readjustment and volume decrease in the deep feeding system. The decrease of the MSR over time is explained by an increase in the viscosity of a progressively water-depleted magma. The amount of water necessary to explain the observed decrease of the MSR is of the order of 4.6%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call