Abstract
AbstractBased on magnetotelluric (MT) array data, we have obtained the first three‐dimensional (3‐D) electrical resistivity model at the Gaoligong intracontinental block boundary in southeastern Tibetan Plateau where the Quaternary intraplate Tengchong volcanism and seismic activities occur. Comparing with results of previous geophysical studies in the area, our MT model clearly reveals three conductive bodies in the depth ranges of 10–30 km in the Tengchong volcano area, which we interpret as three middle‐lower crustal magma chambers associated with the Tengchong volcanism. Seismogenic faults in the Gaoligong Shear Zone (GLGSZ) are characterized by subvertical conductive zones bounded by resistive upper crustal layer on both sides. Earthquakes of moderate magnitudes near the GLGSZ have all occurred within the conductive fault zones at the bottom of the upper resistive crust. More importantly, one large resistive body was imaged at middle‐lower crustal depth beneath the GLGSZ, which seems to block the previously proposed horizontal crustal channel flow along this intracontinental block boundary. Our 3‐D model indicates that crustal channel flow could take place east of the GLGSZ. The current study provides evidence from electrical resistivity structure for the middle‐lower crustal magma chambers in the Tengchong volcano area and detailed 3‐D electrical structure of crustal channel flow in this active tectonic region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.