Abstract

This work addresses the problem of self-excited vibration, which degrades the stability of the levitation control, decreases the ride comfort, and restricts the construction cost of maglev system. Firstly, a minimum model containing a flexible bridge and a single levitation unit is presented. Based on the simplified model, the principle underlying the self-excited vibration is explored. After investigations about the energy transmission between the levitation system and bridge, it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided. To enlarge the equivalent modal damping of bridge, the sky-hooked damper is adopted. Furthermore, to avoid the hardware addition of real sky-hooked damper, considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper, the technique of the virtual sky-hooked damper is proposed. The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated. Finally, numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.