Abstract

A wide range of localization techniques has been proposed recently that leverage smartphone sensors. Context awareness serves as the backbone of these localization techniques, which helps them to shift the localization technologies to improve efficiency and energy utilization. Indoor-outdoor (IO) context sensing plays a vital role for such systems, which serve both indoor and outdoor localization. IO systems work with collaborative technologies including the Global Positioning System (GPS), cellular tower signals, Wi-Fi, Bluetooth and a variety of smartphone sensors. GPS- and Wi-Fi-based systems are power hungry, and their accuracy is severed by limiting factors like multipath, shadowing, etc. On the other hand, various built-in smartphone sensors can be deployed for environmental sensing. Although these sensors can play a crucial role, yet they are very less studied. This research aims at investigating the use of ambient magnetic field data alone from a smartphone for IO detection. The research first investigates the feasibility of utilizing magnetic field data alone for IO detection and then extracts different features suitable for IO detection to be used in machine learning-based classifiers to discriminate between indoor and outdoor environments. The experiments are performed at three different places including a subway station, a shopping mall and Yeungnam University (YU), Korea. The training data are collected from one spot of the campus, and testing is performed with data from various locations of the above-mentioned places. The experiment involves Samsung Galaxy S8, LG G6 and Samsung Galaxy Round smartphones. The results show that the magnetic data from smartphone magnetic sensor embody enough information and can discriminate the indoor environment from the outdoor environment. Naive Bayes (NB) outperforms with a classification accuracy of 83.26%, as against Support vector machines (SVM), random induction (RI), gradient boosting machines (GBM), random forest (RF), k-nearest neighbor (kNN) and decision trees (DT), whose accuracies are 67.21%, 73.38%, 73.40%, 78.59%, 69.53% and 68.60%, respectively. kNN, SVM and DT do not perform well when noisy data are used for classification. Additionally, other dynamic scenarios affect the attitude of magnetic data and degrade the performance of SVM, RI and GBM. NB and RF prove to be more noise tolerant and environment adaptable and perform very well in dynamic scenarios. Keeping in view the performance of these classifiers, an ensemble-based stacking scheme is presented, which utilizes DT and RI as the base learners and naive Bayes as the ensemble classifier. This approach is able to achieve an accuracy of 85.30% using the magnetic data of the smartphone magnetic sensor. Moreover, with an increase in training data, the accuracy of the stacking scheme can be elevated by 0.83%. The performance of the proposed approach is compared with GPS-, Wi-Fi- and light sensor-based IO detection.

Highlights

  • The hallmark of this decade is the wide proliferation of modern mobile devices that comprise mainly smartphones

  • The extracted features were fed into the selected machine learning algorithms to classify the magnetic data samples taken from the indoor and outdoor environment

  • This research aims to investigate the feasibility of using magnetic field data to perform IO detection using data from a magnetic sensor of a commercial smartphone

Read more

Summary

Introduction

The hallmark of this decade is the wide proliferation of modern mobile devices that comprise mainly smartphones. According to World Bank statistics, the amount of current users of mobile devices is 4.57 billion, and this is expected to grow to 4.78 billion by 2020 [1]. These mobile devices provide hundreds of millions of apps (application) to assist the users to perform everyday activities. The field of LBS has received a rapid attention due to its pivotal role in many areas including tracking, providing on-the-go services in the proximity, navigation, location-sensitive billing and advertising and safety-related services [2]. LBS are provided through mobile apps depending on the user location, which is calculated through mobile devices and communication networks [3,4]. The LBS sector is gaining incremental demand and continual significant research attention from industry and academia alike

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call