Abstract
We describe a straightforward single-peptide design that self-assembles into extended and thickened nano-to-mesoscale fibers of remarkable stability and order. The basic chassis of the design is the well-understood dimeric alpha-helical coiled-coil motif. As such, the peptide has a heptad sequence repeat, abcdefg , with isoleucine and leucine residues at the a and d sites to ensure dimerization. In addition, to direct staggered assembly of peptides and to foster fibrillogenesisthat is, as opposed to blunt-ended discrete speciesthe terminal quarters of the peptide are cationic and the central half anionic with lysine and glutamate, respectively, at core-flanking e and g positions. This +,-,-,+ arrangement gives the peptide its name, MagicWand (MW). As judged by circular dichroism (CD) spectra, MW assembles to alpha-helical structures in the sub-micromolar range and above. The thermal unfolding of MW is reversible with a melting temperature >70 degrees C at 100 muM peptide concentration. Negative-stain transmission electron microscopy (TEM) of MW assemblies reveals stiff, straight, fibrous rods that extended for tens of microns. Moreover, different stains highlight considerable order both perpendicular and parallel to the fiber long axis. The dimensions of these features are consistent with bundles of long, straight coiled alpha-helical coiled coils with their axes aligned parallel to the long axis of the fibers. The fiber thickening indicates inter-coiled-coil interactions. Mutagenesis of the outer surface of the peptide i.e., at the b and f positionscombined with stability and microscopy measurements, highlights the role of electrostatic and cation-pi interactions in driving fiber formation, stability and thickening. These findings are discussed in the context of the growing number of self-assembling peptide-based fibrous systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.