Abstract

A number α, in the range from n to 2n, is magic for n with respect to a given alphabet size s, if there is no minimal nondeterministic finite automaton of n states and s input symbols whose equivalent minimal deterministic finite automaton has α states. We show that in the case of a ternary alphabet, there are no magic numbers. For all n and α satisfying n ⩽ α ⩽ 2n, we define an n-state nondeterministic finite automaton with a three-letter input alphabet that requires exactly α deterministic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.