Abstract

The ionization potentials (IPs) of several large carbon clusters Cn (n≥48), including the enhanced abundance (‘‘magic number’’) clusters C50, C60, and C70, have been determined by Fourier transform ion cyclotron resonance (FTICR) mass spectrometric charge transfer bracketing experiments. The IPs of C50, C60, and C70 were bracketed by the same two charge transfer compounds, leading to a common value of 7.61±0.11 eV. The IPs of even numbered clusters adjacent to these magic number clusters were found to be lower by as much as 0.5 eV and all clusters between C50 and C200 were determined to have IPs greater than 6.20 eV. The reaction rates of C+60 and C+70 with metallocenes were anomalously slow in comparison to the other large carbon cluster ions. IP and reactivity results suggest that C50, C60, and C70 may indeed have different or more stable structures than neighboring clusters, which supports the hypothesis of closed-shell, spherical species. The implications of these results for the mechanism of C+n formation by direct laser vaporization are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.