Abstract
ABSTRACTGamma-ray bursts (GRBs) are explosive transient events occurring at cosmological distances, releasing a large amount of energy as electromagnetic radiation over several energy bands. We report the detection of the long GRB 201216C by the MAGIC telescopes. The source is located at z = 1.1 and thus it is the farthest one detected at very high energies. The emission above 70 GeV of GRB 201216C is modelled together with multiwavelength data within a synchrotron and synchrotron self-Compton (SSC) scenario. We find that SSC can explain the broad-band data well from the optical to the very-high-energy band. For the late-time radio data, a different component is needed to account for the observed emission. Differently from previous GRBs detected in the very-high-energy range, the model for GRB 201216C strongly favours a wind-like medium. The model parameters have values similar to those found in past studies of the afterglows of GRBs detected up to GeV energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.