Abstract

In principle, the image encryption algorithm produces an encrypted image. The encrypted image is composed of arbitrary patterns that do not provide any clues about the plain image and its cipher key. Ideally, the encrypted image is entirely independent of its plain image. Many functions can be used to achieve this goal. Based on the functions used, image encryption techniques are categorized into: (1) Block-based; (2) Chaotic-based; (3) Transformation-based; (4) Conventional-based; and (5) Miscellaneous based. This study proposes a magic cube puzzle approach to encrypt an 8-bit grayscale image. This approach transforms a plain image into a particular size magic cube puzzle, which is consists of a set of blocks. The magic cube puzzle algorithm will diffuse the pixels of the plain image as in a Rubik’s Cube game, by rotating each block in a particular direction called the transposition orientation. The block’s transposition orientation is used as the key seed, while the generation of the cipher key uses a random permutation of the key seed with a certain key length. Several performance metrics have been used to assess the goals, and the results have been compared to several standard encryption methods. This study showed that the proposed method was better than the other methods, except for entropy metrics. For further studies, modification of the method will be carried out in such a way as to be able to increase its entropy value to very close to 8 and its application to true color images. In essence, the magic cube puzzle approach has a large space for pixel diffusion that is possibly supposed to get bigger as a series of data has transformed into several magic cubes. Then, each magic cube has transposed with a different technique. This proposed approach is expected to add to a wealth of knowledge in the field of data encryption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call