Abstract

Gliomas are the most common primary brain malignancies and are associated with a poor prognosis. Here, we showed that the PDZ domain-containing protein membrane-associated guanylate kinase inverted 3 (MAGI3) was downregulated at the both mRNA and protein levels in human glioma samples. MAGI3 inhibited proliferation, migration, and cell cycle progression of glioma cells in its overexpression and knockdown studies. By using GST pull-down and co-immunoprecipitation assays, we found that MAGI3 bound to β-catenin through its PDZ domains and the PDZ-binding motif of β-catenin. MAGI3 overexpression inhibited β-catenin transcriptional activity via its interaction with β-catenin. Consistently, MAGI3 overexpression in glioma cells C6 suppressed expression of β-catenin target genes including Cyclin D1 and Axin2, whereas MAGI3 knockdown in glioma cells U373 and LN229 enhanced their expression. MAGI3 overexpression decreased growth of C6 subcutaneous tumors in mice, and inhibited expression of β-catenin target genes in xenograft tumors. Furthermore, analysis based on the Gene Expression Omnibus (GEO) glioma dataset showed association of MAGI3 expression with overall survival and tumor grade. Finally, we demonstrated negative correlation between MAGI3 expression and activity of Wnt/β-catenin signaling through GSEA of three public glioma datasets and immunohistochemical staining of clinical glioma samples. Taken together, these results identify MAGI3 as a novel tumor suppressor and provide insight into the pathogenesis of glioma.

Highlights

  • Gliomas are the most common primary brain tumors, comprising heterogeneous entities from low-grade to high-grade malignancies

  • We identified a PDZ protein, membrane-associated guanylate kinase inverted 3 (MAGI3) as a novel inhibitor of Wnt/β-catenin signaling and showed that it suppressed the malignant phenotypes of glioma cells

  • We show that the PDZ protein MAGI3 binds to β-catenin, and inhibits its transcriptional activity

Read more

Summary

Introduction

Gliomas are the most common primary brain tumors, comprising heterogeneous entities from low-grade to high-grade malignancies. Aberrant activation of Wnt/β-catenin signaling has been implicated in a variety of human cancers including glioma. Β-catenin upregulation or activation of its downstream signaling cascades is associated with glioma and positively correlated with tumor grade and poor prognosis [6,7,8,9,10,11,12]. Β-catenin is responsible for the dysregulation of the reactivation of astrocyte signaling, which plays a key role in the pathogenesis of these tumors [13]. These findings indicate a proto-oncogenic role for β-catenin in gliomagenesis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.